

Mitigation of environmental impact caused by Flame retardant textile finishing chemicals

Duratex/Flarex Workshop, Kortrijk, 14/3/2019 Ine De Vilder

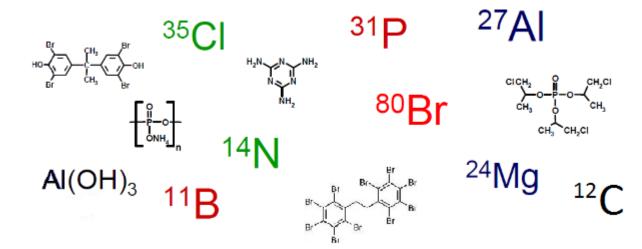
www.alternet.org

Upholstery

Mattress ticking

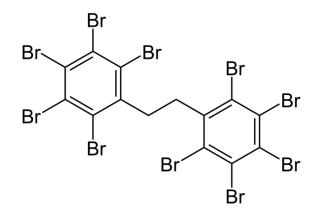
Curtains

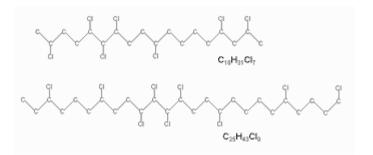
Bed linen



Focus Flarex: interior textiles for the contract market

Huge variety of FRs!



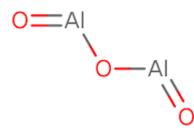


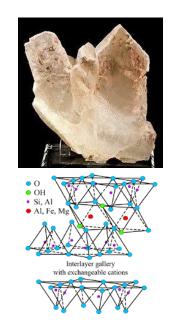
Halogenated (Br, Cl, F)

Classes

- Radical quenching in gas phase (substitution of high-energy free-radicals by lowenergy free-radicals)
- Avoid the fire cycle to establish or to sustain itself
- High efficiency low loadings (e.g. 12%wt)
- Bromine more efficient than chlorine
- Mostly used in combination with antimony trioxide as synergist

Minerals (Al, Mg,...)

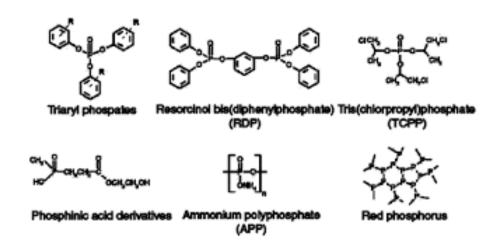

- Endothermic decomposition (energy capture)
- Dilution of combustion zone with inert gases (water)
- Non flammable layer material surface


Classes

• Low efficiency – high loadings (60%wt)

 $Mg_3Ca(CO_3)_4$

 $Mg_{5}(CO_{3})_{4}(OH)_{2} \cdot 4H_{2}O$

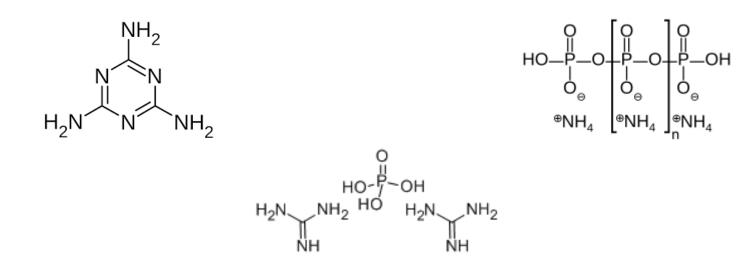


Phosphorus

- Powerful char promoter
- Often intumescent systems

Classes

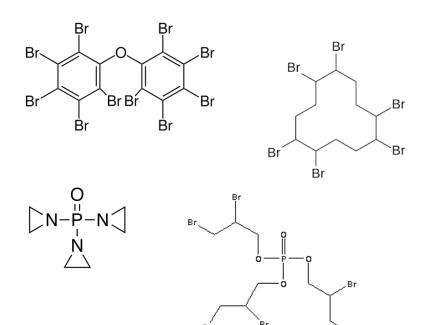
- Char hinders the passage of flammable gases to the flame
- Char shields polymer from energy (heat) supply
- Varying efficiency & loadings (10-30%wt)



Nitrogen

- Enhancing formation of cross-linked stable compounds at high temperatures, which inhibits pyrolysis
- Dilution of combustion zone with inert gas (nitrogen)
- Used as blowing agent in intumescent systems
- Low efficiency alone, good synergist

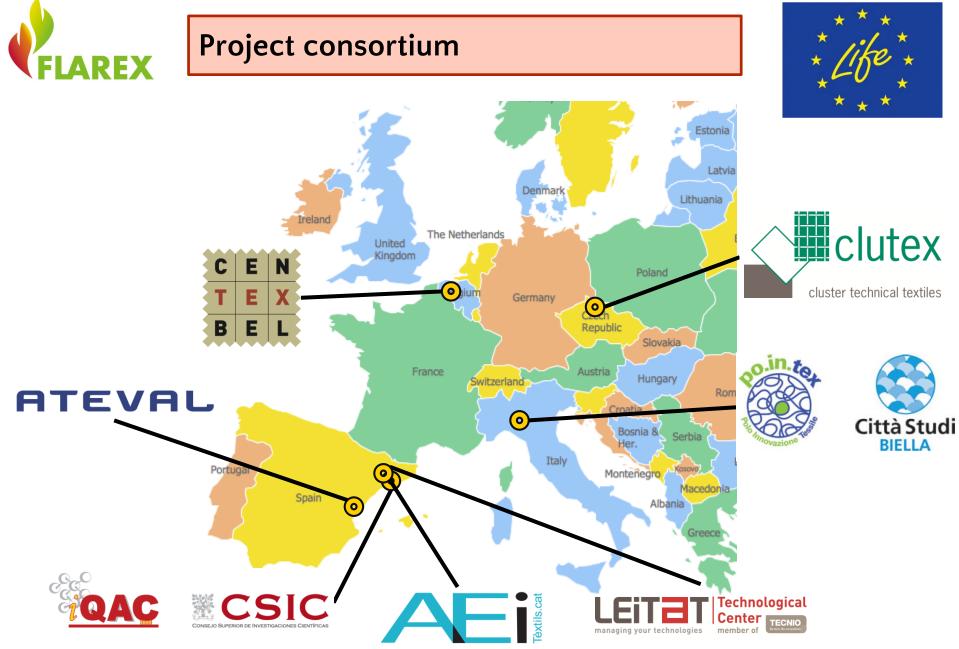
Classes


• Often used in combination with P-based FRs

Some flame retardants are HARMFUL

\rightarrow Several have been phased out

Others are still UNCLEAR


• European LIFE project

LIFE-FLAREX is a project co-funded by the European Union under the LIFE+ Financial Instrument within the axe Environment Policy and Governance and under the Grant Agreement n. LIFE16 ENV/ES/000374

Coordinated by AEI Textil, Spain

Project facts

- 3 years started July 2017
- 7 partners from 4 countries
- Grant: ~700.000 Euro
- www.life-flarex.eu

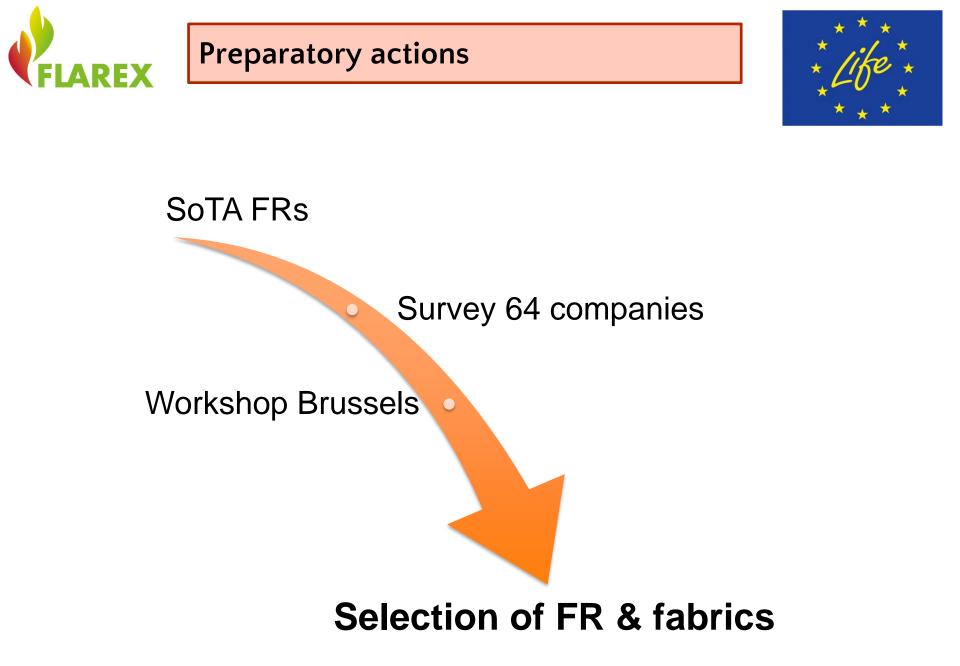
AGRUPACIÓ D'EMPRESES INNOVADORES

PROJECT OBJECTIVES

 To apply the substitution principle to FR chemicals

 To demonstrate and evaluate suitable FR alternatives

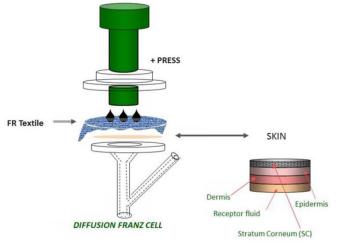
•To encourage the substitution



- ECHA
- Euratex
- Flame Retardant Europe (previously EFRA)
- Polytechnic University of Catalonia

Preparatory actions

Application	Specific fabric composition	Conventional Flame Retardants	Intermediate Flame retardants	Alternative Flame Retardants
Curtains	100% PES	(1) Decabromodiphenyl ethane + melamine cyanurate(2) Decabromodiphenyl ethane + ATO	(1) Polymeric FR	(1) Cyclic phosphonate
Upholstery	100% PES	(1) Decabromodiphenyl ethane + melamine cyanurate(2) Decabromodiphenyl ethane + ATO	(1) Polymeric FR	(1) Ammonium polyphosphate(2) Expandable graphite
Mattress ticking	50/50 CO/PES 100% PES	(1) Decabromodiphenyl ethane + melamine cyanurate(2) Decabromodiphenyl ethane + ATO	(1) Polymeric FR	(1) Ammonium polyphosphate(2) Guanidine phosphate(3) Ammonium sulfamate
Bed sheets	50/50 CO/PES and 100% CO	 (1) Dialkyl phosphono carboxylic acid amide (2) Decabromo diphenyl ethane + melamine cyanurate (3) Decabromo diphenyl ethane + ATO 	(1) Polymeric FR	(1) Ammonium sulfamate + Urea + PO(OH) ₂ -R-PO(OH) ₂ (2) Phosphorous based

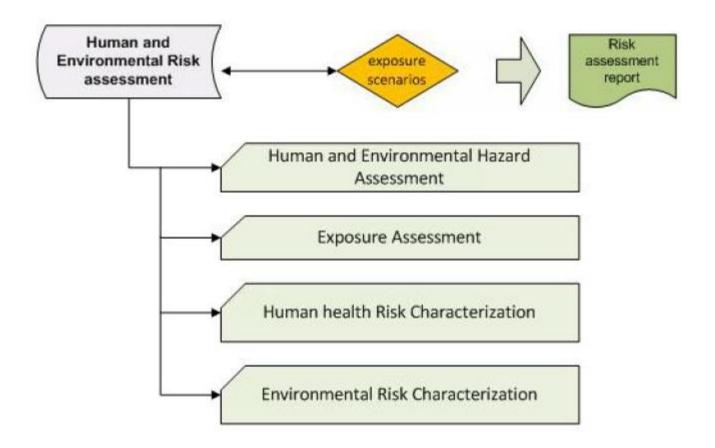

Application of FR onto textile via coating/padding

Technical performance

- Evaluation at lab scale
 - → Burning behaviour & other textile properties
- Upscaling to industrial scale

Toxicology

Percutaneous absorption tests



Implementation actions

Risk assessment

Implementation actions

→ View on the overall impact of different FRs

Materials

PES 3D spacer fabric

PES/CO 50/50

Tested by EN 597-1 and 2 on 35 kg flame retardant foam

Application	Conventional Flame Retardants	Intermediate Flame retardants	Alternative Flame Retardants
	(1) Decabromodiphenyl ethane + melamine		(1) Ammonium polyphosphate
Mattress cyanurate (1) Polyme	(1) Polymeric FR	(2) Guanidine phosphate	
licking	(2) Decabromodiphenyl ethane + ATO		(3) Ammonium sulfamate

Applied via coating/padding Different concentrations A4 scale

EN 597 mattress ticking – coating

Textile	Formulation Add-on	Flame ignition	Flame ignition Afterburn time (s)	Cigarette ignition
CO/PES	Untreated	yes	2 x >120	no
CO/PES	DBDPE + ATO 62%	no	0 - 0	no
CO/PES	DBDPE + ATO 74%	no	0 - 0	no
CO/PES	DBDPE + MC 57%	no	1 - 3	no
CO/PES	DBDPE + MC 72%	no	0 - 2	no
PES	Untreated	no	0 - 0	no
PES	DBDPE + ATO 90%	no	0 - 0	no
PES	DBDPE + ATO 100%	no	0 - 2	no
PES	DBDPE + MC 120%	no	0 - 0	no
PES	DBDPE + MC 128%	no	0 - 0	no

Conventional halogenated FR good results

EN 597 mattress ticking – padding

	Formulation &	Flame	Flame ignition	Cigarette
Textile	Pick-up	ignition	Afterburn time (s)	ignition
CO/PES	Untreated	yes	2 x >120	no
CO/PES	Guanidine phosphate 11%	no	0 - 0	no
CO/PES	Guanidine phosphate 19%	no	0 - 0	no
CO/PES	Ammonium sulfamate 5%	no	0 - 0	no
CO/PES	Ammonium sulfamate 11%	no	0 - 0	no
CO/PES	APP 7%	no	0 - 2	no
CO/PES	APP 16%	no	0 - 0	no
PES	Untreated	no	0 - 0	no
PES	Guanidine phosphate 12%	no	0 - 0	no
PES	Guanidine phosphate 19%	no	0 - 0	no
PES	Ammonium sulfamate 7%	no	0 - 2	no
PES	Ammonium sulfamate 13%	no	0 - 0	no
PES	APP 16%	no	0 - 0	no
PES	APP 27%	no	0 - 0	no

All 3 alternatives pass the EN 597-1 and 2

But no differentiation

BS6807 mattress ticking - padding

Textile	Formulation &	Preliminary	Burning	Depth/width	Longest
Textile	Pick-up	Pass/fail	time	crater	burning
CO/PES	Untreated	fail	escalating	-	-
CO/PES	Guanidine phosphate 11%	pass	3'22"	4 / 10	fabric
CO/PES	Guanidine phosphate 19%	pass	3'21"	4 / 9.5	fabric
CO/PES	Ammonium sulfamate 5%	pass	3'32"	3.5 / 11.5	fabric
CO/PES	Ammonium sulfamate 11%	pass	3'25''	4 / 13	fabric
CO/PES	APP 7%	pass	3'14"	3.5 / 12.5	fabric
CO/PES	APP 16%	pass	3'38''	3.5 / 10	crib
PES	Untreated	pass	4'33"	5 / 18	fabric
PES	Guanidine phosphate 12%	pass	2'33''	4 / 12	crib
PES	Guanidine phosphate 19%	pass	4'11"	5.5 / 18	fabric
PES	Ammonium sulfamate 7%	pass	3'13"	5 / 14.5	fabric
PES	Ammonium sulfamate 13%	pass	2'50''	5.5 / 12.5	crib
PES	APP 16%	pass	4'20''	6 / 16	fabric
PES	APP 27%	pass	2'39''	3 / 10.5	fabric

Differentiation possible: Beter performing ones in green

FR is mixed with waterborne polyurethane binder

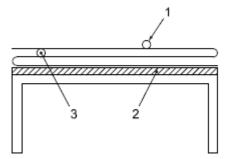
Textile	Formulation & Pick-up	Flame ignition	Flame ignition Afterburn time (s)	Cigarette ignition
CO/PES	Untreated	yes	2 x >120	no
CO/PES	40 wt% APP 67% add-on	no	0 - 0	no
CO/PES	40 wt% APP 39% add-on	no	0 - 2	no
CO/PES	20 wt% APP 31% add-on	yes	2 x >120	no
CO/PES	20 wt% APP 66% add-on	no	36 - 41	no
CO/PES	Polymeric FR 45% add-on	no	0 - 0	no
PES	Untreated	no	0 - 0	no
PES	40 wt% APP 48% add-on	no	0 - 0	no
PES	20 wt% APP 39% add-on	no	0 - 0	no

- Well performing alternatives with different chemistries
- Padding proces no (or minor) influence on handle
- Often already applied in industry
- Oeko-tex[®] compliance possible

Lab results bed sheets

Materials

Cotton - 112 g/m²



PES/CO 50/50 - 112 g/m²

• Tested by EN 12952–1 and 2

5 times washed at 60°C (ISO 6330)

deviation: 3 A4 samples stacked for cigarette test

Bed sheets

Application	Specific fabric composition	Conventional Flame Retardants	Intermediate Flame retardants	Alternative Flame Retardants
Bed sheets	50/50 CO/PES and 100% CO	 (1) Dialkyl phosphono carboxylic acid amide (2) Decabromo diphenyl ethane + melamine cyanurate (3) Decabromo diphenyl ethane + ATO 	(1) Polymeric FR	(1) Ammonium sulfamate + Urea + PO(OH) ₂ -R-PO(OH) ₂ (2) Phosphorous based

Applied via padding A4 scale

ISO 12952-1 and 2 bed sheets

Textile	Formulation & Add-on	Flame ignition	Flame ignition Afterburn time (s)	Cigarette ignition
CO/PES	Untreated	yes	2 x >120	no
CO/PES	DBDPE + MC – 11%	yes	2 x >120	no
CO/PES	DBDPE + MC – 4%	yes	2 x >120	no
CO/PES	DBDPE + ATO – 11%	yes	2 x >120	no
CO/PES	DBDPE + ATO – 3%	yes	2 x >120	no
CO/PES	DPCAA – 6%	no	15 - 10	no
СО	Untreated	no	39 - 75	no
СО	DBDPE + MC – 6%	yes	2 x >120	no
со	DBDPE + MC – n.d.	yes	2 x >120	no
со	DBDPE + ATO – 3%	yes	2 x >120	no
со	DBDPE + ATO – n.d.	yes	2 x >120	no
СО	DPCAA – 0.4%	yes	>120 - 31	no

- Halogenated FRs: bad results \rightarrow not resistant to washings
- Pyrovatex: potential good results on both fabrics

ISO 12952-1 and 2 bed sheets

Textile	Formulation	Flame ignition	Flame ignition Afterburn time (s)	Cigarette ignition
CO/PES	Untreated	yes	2 x >120	no
CO/PES	AS + Urea + P-based	yes	2 x >120	no
CO/PES	Polymeric FR + ATO	no	0 - 0	no
СО	Untreated	no	39 - 75	no
СО	AS + Urea + P-based	no	0 - 0	no
со	Polymeric FR + ATO	no	23 - 0	no
СО	P-based FR	no	6 - 1	no

- Polymeric FR: good FR results for both cotton and CO/PES but increasing stiffness
- Alternative FRs possible for cotton fabric

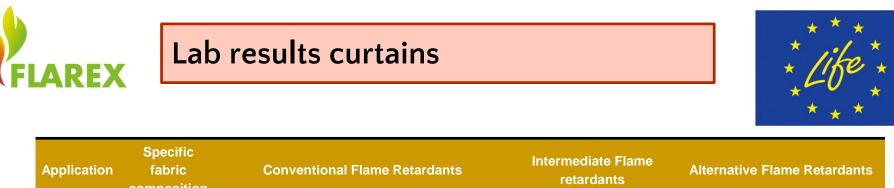
- Well performing alternatives but only for cotton fabrics
- No alternative for PES/CO 50/50 blend detected \rightarrow PES content too high (as PES does not react with FR)
- Bottle neck is the repeated washing cycles → permanent treatment necessary
- •Oeko-tex[®] compliance with alternatives possible (cotton)
- Pyrovatex-like treatments which release less formaldehyde on the market

Lab results curtains

Materials

PES 100 g/m²

PES 250 g/m²



• Tested by UNE EN 13773 after 1 x washing at 30°C:

Part 1: UNE EN 1101 Part 2:UNE EN 13772

Application	Specific fabric composition	Conventional Flame Retardants	Intermediate Flame retardants	Alternative Flame Retardants
Curtains	100% PES	(1) Decabromodiphenyl ethane + melamine cyanurate	(1) Polymeric FR	(1) Cyclic phosphonate
		(2) Decabromodiphenyl ethane + ATO		

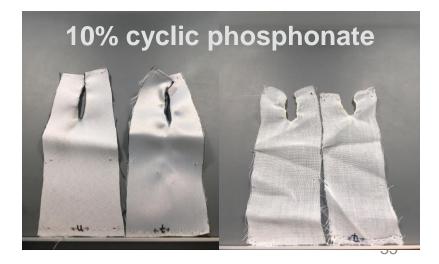
Applied via padding A4 scale



Lab results curtains

Textile	Formulation Add-on	Flame ignition pass
PES	DBDPE + MC 90%	yes
PES	DBDPE + ATO 50%	yes

Resistance to washing poor!

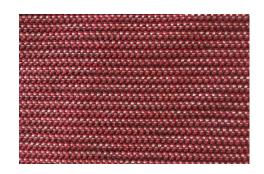

Lab results curtains

Textile	Formulation Textile Add-on		gnition extile B
5 seconds ignition		warp	weft
PES	Cyclic phosphonate 10%	\checkmark	\checkmark
PES	Cyclic phosphonate 30%	\checkmark	\checkmark
PES	Cyclic phosphonate 50%	\checkmark	\checkmark
PES	Cyclic phosphonate 70%	\checkmark	\checkmark

Results on polymeric FR pending

Wash resistance for conventional FR low -> high loadings needed

- Effective treatment with alternatives possible
- Results pending



Lab results upholstery

Materials

PES 320 g/m²

Tested by UNE EN 1021:2015 After 30 min of soaking at 40°C

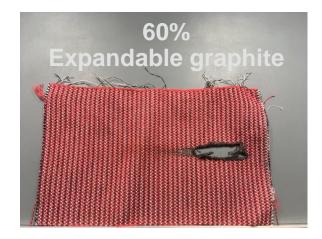
Application	Specific fabric composition	Conventional Flame Retardants	Intermediate Flame retardants	Alternative Flame Retardants
Upholstery	100% PES	(1) Decabromodiphenyl ethane + melamine cyanurate	(1) Polymeric FR	(1) Ammonium polyphosphate
		(2) Decabromodiphenyl ethane + ATO		(2) Expandable graphite

Applied as backcoating On A4-scale

Lab results upholstery - backcoating

Textile	Formulation Add-on	Flame ignition pass
PES	DBDPE + MC 4%	no
PES	DBDPE + MC 6%	no
PES	DBDPE + MC 45%	yes
PES	DBDPE + MC 49%	yes
PES	DBDPE + ATO 2%	no
PES	DBDPE + ATO 5%	no
PES	DBDPE + ATO 16%	yes
PES	DBDPE + ATO 42%	yes

Conventional FR good working



Lab results upholstery - backcoating

Textile	Formulation	Flame ignition pass
PES	Expandable Graphite 49%	no
PES	Expandable Graphite 60%	yes
PES	Expandable Graphite 70%	yes
PES	Polymeric FR 43%	yes
PES	Polymeric FR + ATO 38%	yes

Possibilities with expandable graphite and polymeric FR

 Halogenated FR well performing Still often used in industry

• Well performing alternatives with different chemistries Drawbacks? Colour (graphite), stiffness (polymeric FR)

• Evaluation APP pending

Selection of FRs will demonstrated in industrial run

- Companies in Italy, Spain and Czech Republic
- Monitoring of the process by Leitat → LCI
 e.g. electricity comsumptions, emissions, ...
 → Input for LCA and risk assessment
- Re-assessing the technical performance

- Best practices
- Policy recommendations
- REACH annexes proposals

Outcome

- Roadmap
- Distribution of layman's report

Lets work together

for a safer and greener future

ivi@centexbel.be info@life-flarex.eu